269 research outputs found

    Identification and management of pancreas divisum

    Get PDF
    Introduction: Pancreas divisum is the most common congenital malformation of the pancreas with the majority asymptomatic. The etiological role, pathogenesis, clinical significance and management of pancreas divisum in pancreatic disease has not been clearly defined and our understanding is yet to be fully elucidated.Areas covered: This review describes the role of pancreas divisum in the development of pancreatic disease and the ambiguity related to it. In our attempt to offer clarity, a comprehensive search on PubMed, Ovid, Embase and Cochrane Library from inception to May 2019 was undertaken using key words "pancreas divisum", "idiopathic recurrent acute pancreatitis" and "chronic pancreatitis".Expert opinion: Current research fails to define a clear association between pancreas divisum and pancreatic disease. Though debatable, several studies do suggest a pathological role of pancreas divisum in pancreatic disease and a benefit of minor papilla therapy in the setting of acute recurrent pancreatitis. Surgical and endoscopic therapeutic modalities have not been directly compared. With the current data available, it would be imprudent to advise a definitive line of management for pancreatic disease associated with pancreas divisum and should involve a comprehensive discussion with the individual patient to define expectations before embarking on any medical and/or interventional therapy

    Brain Activation Time-Locked to Sleep Spindles Associated With Human Cognitive Abilities

    Get PDF
    Simultaneous electroencephalography and functional magnetic resonance imaging (EEG–fMRI) studies have revealed brain activations time-locked to spindles. Yet, the functional significance of these spindle-related brain activations is not understood. EEG studies have shown that inter-individual differences in the electrophysiological characteristics of spindles (e.g., density, amplitude, duration) are highly correlated with “Reasoning” abilities (i.e., “fluid intelligence”; problem solving skills, the ability to employ logic, identify complex patterns), but not short-term memory (STM) or verbal abilities. Spindle-dependent reactivation of brain areas recruited during new learning suggests night-to-night variations reflect offline memory processing. However, the functional significance of stable, trait-like inter-individual differences in brain activations recruited during spindle events is unknown. Using EEG–fMRI sleep recordings, we found that a subset of brain activations time-locked to spindles were specifically related to Reasoning abilities but were unrelated to STM or verbal abilities. Thus, suggesting that individuals with higher fluid intelligence have greater activation of brain regions recruited during spontaneous spindle events. This may serve as a first step to further understand the function of sleep spindles and the brain activity which supports the capacity for Reasoning

    Functional differences in cerebral activation between slow wave-coupled and uncoupled sleep spindles

    Get PDF
    Spindles are often temporally coupled to slow waves (SW). These SW-spindle complexes have been implicated in memory consolidation that involves transfer of information from the hippocampus to the neocortex. However, spindles and SW, which are characteristic of NREM sleep, can occur as part of this complex, or in isolation. It is not clear whether dissociable parts of the brain are recruited when coupled to SW vs. when spindles or SW occur in isolation. Here, we tested differences in cerebral activation time-locked to uncoupled spindles, uncoupled SW and coupled SW-spindle complexes using simultaneous EEG-fMRI. Consistent with the “active system model,” we hypothesized that brain activations time-locked to coupled SW-spindles would preferentially occur in brain areas known to be critical for sleep-dependent memory consolidation. Our results show that coupled spindles and uncoupled spindles recruit distinct parts of the brain. Specifically, we found that hippocampal activation during sleep is not uniquely related to spindles. Rather, this process is primarily driven by SWs and SW-spindle coupling. In addition, we show that SW-spindle coupling is critical in the activation of the putamen. Importantly, SW-spindle coupling specifically recruited frontal areas in comparison to uncoupled spindles, which may be critical for the hippocampal-neocortical dialogue that preferentially occurs during sleep

    Brain activation time-locked to sleep spindles associated with human cognitive abilities

    Get PDF
    Copyright © 2019 Fang, Ray, Owen and Fogel. Simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) studies have revealed brain activations time-locked to spindles. Yet, the functional significance of these spindle-related brain activations is not understood. EEG studies have shown that inter-individual differences in the electrophysiological characteristics of spindles (e.g., density, amplitude, duration) are highly correlated with Reasoning abilities (i.e., fluid intelligence ; problem solving skills, the ability to employ logic, identify complex patterns), but not short-term memory (STM) or verbal abilities. Spindle-dependent reactivation of brain areas recruited during new learning suggests night-to-night variations reflect offline memory processing. However, the functional significance of stable, trait-like inter-individual differences in brain activations recruited during spindle events is unknown. Using EEG-fMRI sleep recordings, we found that a subset of brain activations time-locked to spindles were specifically related to Reasoning abilities but were unrelated to STM or verbal abilities. Thus, suggesting that individuals with higher fluid intelligence have greater activation of brain regions recruited during spontaneous spindle events. This may serve as a first step to further understand the function of sleep spindles and the brain activity which supports the capacity for Reasoning

    While you were sleeping: Evidence for high-level executive processing of an auditory narrative during sleep

    Get PDF
    During sleep we lack conscious awareness of the external environment. Yet, our internal mental state suggests that high-level cognitive processes persist. The nature and extent to which the external environment is processed during sleep remain largely unexplored. Here, we used an fMRI synchronization-based approach to examine responses to a narrative during wakefulness and sleep. The stimulus elicited the auditory network and a frontoparietal pattern of activity, consistent with high-level narrative plot-following. During REM sleep, the same frontoparietal pattern was observed in one of three participants, and partially in one other, confirming that it is possible to track and follow the moment-to-moment complexities of a narrative during REM sleep. Auditory network recruitment was observed in both non-REM and REM sleep, demonstrating preservation of low-level auditory processing, even in deep sleep. This novel approach investigating cognitive processing at different levels of awareness demonstrates that the brain can meaningfully process the external environment during REM sleep

    Detection of Exocrine Dysfunction by MRI in Patients with Early Chronic Pancreatitis

    Get PDF
    Purpose To determine if T1-weighted MR signal of the pancreas can be used to detect early CP. Methods A retrospective analysis was performed on 51 suspected CP patients, who had both secretin-enhanced magnetic resonance cholangiopancreatography (S-MRCP) and an intraductal secretin stimulation test (IDST). There were 29 patients in normal and 22 patients in the low bicarbonate group. Bicarbonate level, total pancreatic juice volume, and excretory flow rate were recorded during IDST. Signal intensity ratio of pancreas (SIR), fat signal fraction, pancreatograms findings, and grade of duodenal filling were recorded on S-MRCP by two blinded radiologists. Results There was a significant difference in the signal intensity ratio of the pancreas to spleen (SIRp/s) between the normal and low bicarbonate groups (p < 0.0001). A significant positive correlation was found between pancreatic fluid bicarbonate level and SIRp/s (p < 0.0001). SIRp/s of 1.2 yielded sensitivity of 77% and specificity of 83% for detection of pancreatic exocrine dysfunction (AUC: 0.89). Conclusion T1-weighted MR signal of the pancreas has a high sensitivity and specificity for the detection of parenchymal abnormalities related to exocrine dysfunction and can therefore be helpful in evaluation of suspected early CP

    T1 Mapping for Diagnosis of Mild Chronic Pancreatitis

    Get PDF
    Purpose To determine if the T1 relaxation time of the pancreas can detect parenchymal changes in mild chronic pancreatitis (CP). Materials and Methods This Institutional Review Board (IRB)-approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant retrospective study analyzed 98 patients with suspected mild CP. Patients were grouped as normal (n = 53) or mild CP (n = 45) based on history, presenting symptomatology, and concordant findings on both the secretin-enhanced magnetic resonance cholangiopancreatography (S-MRCP) and endoscopic retrograde cholangiopancreatography (ERCP). T1 maps were obtained in all patients using the same 3D gradient echo technique on the same 3T scanner. T1 relaxation times, fat signal fraction (FSF), and anterior–posterior (AP) diameter were correlated with the clinical diagnosis of CP. Results There was a significant difference (P < 0.0001) in the T1 relaxation times between the control (mean = 797 msec, 95% confidence interval [CI]: 730, 865) and mild CP group (mean = 1099 msec, 95% CI: 1032, 1166). A T1 relaxation time threshold value of 900 msec was 80% sensitive (95% CI: 65, 90) and 69% specific (95% CI: 56, 82) for the diagnosis of mild CP (area under the curve [AUC]: 0.81). Multiple regression analysis showed that T1 relaxation time was the only statistically significant variable correlating with the diagnosis of CP (P < 0.0001). T1 relaxation times showed a weak positive correlation with the pancreatic FSF (ρ = 0.33, P = 0.01) in the control group, but not in the mild CP group. Conclusion The T1 relaxation time of the pancreatic parenchyma was significantly increased in patients with mild CP. Therefore, T1 mapping might be used as a practical quantitative imaging technique for the evaluation of suspected mild CP

    A novel approach to dream content analysis reveals links between learning-related dream incorporation and cognitive abilities

    Get PDF
    © 2018 Fogel, Ray, Sergeeva, De Koninck and Owen. Can dreams reveal insight into our cognitive abilities and aptitudes (i.e., human intelligence )? The relationship between dream production and trait-like cognitive abilities is the foundation of several long-standing theories on the neurocognitive and cognitive-psychological basis of dreaming. However, direct experimental evidence is sparse and remains contentious. On the other hand, recent research has provided compelling evidence demonstrating a link between dream content and new learning, suggesting that dreams reflect memory processing during sleep. It remains to be investigated whether the extent of learning-related dream incorporation (i.e., the semantic similarity between waking experiences and dream content) is related to inter-individual differences in cognitive abilities. The relationship between pre-post sleep memory performance improvements and learning-related dream incorporation was investigated (N = 24) to determine if this relationship could be explained by inter-individual differences in intellectual abilities (e.g., reasoning, short term memory (STM), and verbal abilities). The extent of dream incorporation using a novel and objective method of dream content analysis, employed a computational linguistic approach to measure the semantic relatedness between verbal reports describing the experience on a spatial (e.g., maze navigation) or a motor memory task (e.g., tennis simulator) with subsequent hypnagogic reverie dream reports and waking daydream reports, obtained during a daytime nap opportunity. Consistent with previous studies, the extent to which something new was learned was related (r = 0.47) to how richly these novel experiences were incorporated into the content of dreams. This was significant for early (the first 4 dream reports) but not late dreams (the last 4 dream reports). Notably, here, we show for the first time that the extent of this incorporation for early dreams was related (r = 0.41) to inter-individual differences in reasoning abilities. On the other hand, late dream incorporation was related (r = 0.46) to inter-individual differences in verbal abilities. There was no relationship between performance improvements and intellectual abilities, and thus, inter-individual differences in cognitive abilities did not mediate the relationship between performance improvements and dream incorporation; suggesting a direct relationship between reasoning abilities and dream incorporation. This study provides the first evidence that learning-related dream production is related to inter-individual differences in cognitive abilities

    The Value of Secretin-Enhanced MRCP in Patients With Recurrent Acute Pancreatitis

    Get PDF
    OBJECTIVE The purpose of this study is to assess the additional value of secretin-enhanced MRCP over conventional (non–secretin-enhanced) MRCP in diagnosing disease in patients with recurrent acute pancreatitis. MATERIALS AND METHODS A retrospective review of a radiology database found 72 patients with recurrent acute pancreatitis who had secretin-enhanced MRCP and ERCP correlation within 3 months of each other between January 2007 and December 2011. Of these patients, 54 had no history of pancreatic tumor or surgery and underwent MRI more than 3 months after an episode of acute pancreatitis. In addition, 57 age- and sex-matched control subjects with secretin-enhanced MRCP and ERCP correlation and without a diagnosis of recurrent acute pancreatitis or chronic pancreatitis were enrolled as the control group. All studies were anonymized, and secretin-enhanced MRCP images (image set A) were separated from conventional 2D and 3D MRCP and T2-weighted images (image set B). Image sets A and B for each patient were assigned different and randomized case numbers. Two blinded reviewers independently assessed both image sets for ductal abnormalities and group A image sets for exocrine response to secretin. RESULTS There were statistically significantly more patients with recurrent acute pancreatitis with reduced exocrine function compared with patients in the control group (32% vs 9%; p < 0.01) on secretin-enhanced images. Patients with recurrent acute pancreatitis were more likely to have side branch dilation (p = 0.02; odds ratio, 3.6), but not divisum, compared with the control group. Secretin-enhanced images were superior to non–secretin-enhanced images for detecting ductal abnormalities in patients with recurrent acute pancreatitis, with higher sensitivity (76% vs 56%; p = 0.01) and AUC values (0.983 vs 0.760; p < 0.01). CONCLUSION Up to one-third of patients with recurrent acute pancreatitis showed exocrine functional abnormalities. Secretin-enhanced MRCP had a significantly higher yield for ductal abnormalities than did conventional MRI and should be part of the MRCP protocol for investigation of patients with recurrent acute pancreatitis
    • 

    corecore